By Topic

Synthesis of ICA-based methods for localization of multiple broadband sound sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Anthony Lombard ; Multimedia Communications and Signal Processing, University of Erlangen-Nuremberg, Cauerstr. 7, 91058, Germany ; Yuanhang Zheng ; Walter Kellermann

In this paper, minimization of the statistical dependence is exploited for acoustic source localization purposes. Originally developed for the separation of signal mixtures, we show that Independent Component Analysis (ICA) can also be successfully applied to localize multiple simultaneously active sound sources, with possibly less sensors than sources. First, the recently proposed Averaged Directivity Pattern (ADP) and State Coherence Transform (SCT) methods are reviewed. Similarities and differences between both approaches are underlined and analyzed, leading to a new method merging elements from both concepts, which we call the Modified ADP (MADP). Since the investigated methods do not suffer from the permutation ambiguity, they can be applied in combination with any narrowband or broadband ICA algorithm, without the need to solve the still challenging permutation issue. Experimental results are presented for speech sources in a reverberant environment.

Published in:

2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Date of Conference:

22-27 May 2011