By Topic

The asymptotic properties of polynomial phase estimation by least squares phase unwrapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
McKilliam, R.G. ; Sch. of Inf. Technol. & Electr. Eng., Univ. of Queensland, Brisbane, QLD, Australia ; Clarkson, I.V.L. ; Quinn, B.G. ; Moran, B.

Estimating the coefficients of a noisy polynomial phase signal is important in many fields including radar, biology and radio communications. One approach to estimation attempts to perform polynomial regression on the phase of the signal. This is complicated by the fact that the phase is wrapped modulo 2π and therefore must be unwrapped before the regression can be performed. A recent approach suggested by the authors is to perform the unwrapping in a least squares manner. It was shown by Monte Carlo simulation that this produces a remarkably accurate estimator. In this paper we describe the asymptotic properties of this estimator, showing that it is strongly consistent and deriving its central limit theorem. We hypothesise that the estimator produces very near maximum likelihood performance.

Published in:

Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on

Date of Conference:

22-27 May 2011