We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Incremental classification of process data for anomaly detection based on similarity analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Byttner, S. ; Intell. Syst. Lab., Halmstad Univ., Halmstad, Sweden ; Svensson, M. ; Vachkov, G.

Performance evaluation and anomaly detection in complex systems are time consuming tasks based on analyzing, similarity analysis and classification of many different data sets from real operations. This paper presents an original computational technology for unsupervised incremental classification of large data sets by using a specially introduced similarity analysis method. First of all the so called compressed data models are obtained from the original large data sets by a newly proposed sequential clustering algorithm. Then the data sets are compared by pairs not directly, but by using their respective compressed data models. The evaluation of the pairs is done by a special similarity analysis method that uses the so called Intelligent Sensors (Agents) and data potentials. Finally a classification decision is generated by using a predefined threshold of similarity. The applicability of the proposed computational scheme for anomaly detection, based on many available large data sets is demonstrated on an example of 18 synthetic data sets. Suggestions for further improvements of the whole computation technology and a better applicability are also discussed in the paper.

Published in:

Evolving and Adaptive Intelligent Systems (EAIS), 2011 IEEE Workshop on

Date of Conference:

11-15 April 2011