By Topic

Human action recognition based on 3D SIFT and LDA model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ping Liu ; Sch. of Creative Technol., Univ. of Portsmouth, Portsmouth, UK ; Jin Wang ; She, M. ; Honghai Liu

How to recognize human action from videos captured by modern cameras efficiently and effectively is a challenge in real applications. Traditional methods which need professional analysts are facing a bottleneck because of their shortcomings. To cope with the disadvantage, methods based on computer vision techniques, without or with only a few human interventions, have been proposed to analyse human actions in videos automatically. This paper provides a method combining the three dimensional Scale Invariant Feature Transform (SIFT) detector and the Latent Dirichlet Allocation (LDA) model for human motion analysis. To represent videos effectively and robustly, we extract the 3D SIFT descriptor around each interest point, which is sampled densely from 3D Space-time video volumes. After obtaining the representation of each video frame, the LDA model is adopted to discover the underlying structure-the categorization of human actions in the collection of videos. Public available standard datasets are used to test our method. The concluding part discusses the research challenges and future directions.

Published in:

Robotic Intelligence In Informationally Structured Space (RiiSS), 2011 IEEE Workshop on

Date of Conference:

11-15 April 2011