By Topic

Fingertip force and position control using force sensor and tactile sensor for Universal Robot Hand II

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Wataru Fukui ; Kobe University, 1-1 Rokkodai-cho, Nada-ku, Hyogo, 657-8501, Japan ; Futoshi Kobayashi ; Fumio Kojima ; Hiroyuki Nakamoto
more authors

Various humanoid robots and multi-fingered robot hands are used in research and development. As these robot hands grasp and manipulate an object, the control phase is divided into an “approach phase” and a “manipulation phase.” In the approach phase, a position control method is necessary to control the posture of the robot hand. In the manipulation phase, a force control method is necessary to control the fingertip force of the robot hand. However, it is difficult to control both the force and position of these hands at the same time. In this paper, we propose a grasping force control method based on position control for manipulation. In this proposed method, the finger position is controlled in the direction of the force vector. With this control method, any external force is cancelled and the initial force is kept constant, or the setting force is applied to an object.

Published in:

Robotic Intelligence In Informationally Structured Space (RiiSS), 2011 IEEE Workshop on

Date of Conference:

11-15 April 2011