Cart (Loading....) | Create Account
Close category search window
 

HMM-based gait modeling and recognition under different walking scenarios

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
El-Yacoubi, M.A. ; Dept. EPH, Telecom SudParis, Evry, France ; Shaiek, A. ; Dorizzi, B.

This paper addresses gait recognition, the problem of identifying people by the way of their walk. The proposed system consists of a model-free approach which extracts features directly from the human silhouette. The dynamics of the gait are modeled using Hidden Markov Models. Experiments have been carried out on the CASIA dataset C consisting of 153 people under four walking scenarios: normal walking, slow walking, fast walking and walking while carrying a bag. The results obtained are promising and compare favorably with existing approaches.

Published in:

Multimedia Computing and Systems (ICMCS), 2011 International Conference on

Date of Conference:

7-9 April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.