By Topic

Color Segmentation Using Improved Mountain Clustering Technique Version-2

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pooja Agrawal ; Dept. of Aerosp. Eng., Indian Inst. of Sci., Bangalore, India ; Nishchal K. Verma ; Saurabh Agrawal ; Shantaram Vasikarla

This paper proposes a heuristically optimized version of Improved Mountain Clustering (IMC) Technique referred to as IMC-2. IMC-2 provides better quality clusters measured in terms of Global Silhouette and Separation indices as measures of information. The IMC-2 based color segmentation approach has been applied to various categories of images including face, stripes and grayscale images and compared with some extensively used clustering techniques such as K-means and FCM. The color segmentation performance has been compared on widely used and accepted validation indices, Global Silhouette Index and Separation Index. The color segments or clusters obtained have been verified visually and validated quantitatively.

Published in:

Information Technology: New Generations (ITNG), 2011 Eighth International Conference on

Date of Conference:

11-13 April 2011