Cart (Loading....) | Create Account
Close category search window
 

Terahertz Characterization of Single-Walled Carbon Nanotube and Graphene On-Substrate Thin Films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Min Liang ; Dept. of Electr. & Comput. Eng., Univ. of Arizona, Tucson, AZ, USA ; Wu, Ziran ; Liwei Chen ; Li Song
more authors

In this paper, single-walled carbon nanotube (SWNT) thin films with thicknesses on the order of hundreds nanometers on glass substrates and a graphene thin film (2-3 layers) on a glass substrate are characterized via terahertz time-domain spectroscopy. The substrate permittivity is first characterized. The thin film is then treated as a surface boundary condition between the substrate and air. Using the uniform field approximation, the surface conductivities of these films are extracted. To improve accuracy, precise thickness of the sample substrate is calculated through an iteration process in both dielectric constant extraction and surface conductivity extraction. Uncertainty analysis of the measured thin-film properties is performed. The SWNT results show consistent surface conductivities for samples on different substrates and with different film thicknesses. The measured graphene terahertz conductivity is comparable to the values reported in the literature at dc and optical frequency. This characterization method has been successfully applied as a means to evaluate metallic content of SWNT samples to verify a metallic SWNT removing process using high-power microwave irradiation.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:59 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.