By Topic

Optical and Electrical Diagnostics of Cold Ar Atmospheric Pressure Plasma Jet Generated With a Simple DBD Configuration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guo-Dong Wei ; Key Lab. of Mater. Modification by Laser, Ion & Electron Beams, Dalian Univ. of Technol., Dalian, China ; Chun-Sheng Ren ; Mu-Yang Qian ; Qiu-Yue Nie

A cold Ar atmospheric pressure plasma jet generated using a DBD configuration device equipped with two powered electrodes as well as a grounded ring electrode driven by a sinusoidal excitation voltage at 38 kHz is presented in this paper. In this paper, properties of the jet discharge are studied by electrical diagnostics, including applied voltage, conducting current, and average absorbed power. Moreover, the optical emission spectroscopy is used to measure the plasma parameters, of which the electronic excitation temperature is determined by the Boltzmann's plot method using ten characteristic lines of Ar from 3p54p → 3p54s and 3p55p → 3p54s transitions whereas the gas temperature is obtained by using a fiber thermometer (FISO FOT-L-SD). It has been found that the conducting current, average absorbed power, the excitation temperature, and gas temperature increase with the applied voltage. On the other hand, these parameters are inversely proportional to the argon gas flow rate. What is more is that the production of oxygen radical (produced by the collisions between oxygen molecule from atmosphere and high-energy particles in plasma effluent) at a gas flow rate of 2 slm is investigated by means of optical actinometry, which is found to increase with the applied voltage.

Published in:

Plasma Science, IEEE Transactions on  (Volume:39 ,  Issue: 9 )