By Topic

Nonlinear System Modeling, Optimal Cam Design, and Advanced System Control for an Electromechanical Engine Valve Drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yihui Qiu ; Massachusetts Inst. of Technol., Cambridge, MA, USA ; Perreault, D.J. ; Keim, T.A. ; Kassakian, J.G.

A cam-based shear force-actuated electromechanical valve drive system offering variable valve timing in internal combustion engines was previously proposed and demonstrated. To transform this concept into a competitive commercial product, several major challenges need to addressed, including the reduction of power consumption, transition time, and size. As shown in this paper, by using nonlinear system modeling, optimizing cam design, and exploring different control strategies, the power consumption has been reduced from 140 to 49 W (65%), the transition time has been decreased from 3.3 to 2.7 ms (18%), and the actuator torque requirement has been cut from 1.33 to 0.30 N·m (77%).

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:17 ,  Issue: 6 )