By Topic

A New Maximum Simplex Volume Method Based on Householder Transformation for Endmember Extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Junmin Liu ; State Key Lab. for Manuf. Syst. Eng., Xi''an Jiaotong Univ., Xi''an, China ; Jiangshe Zhang

Endmember extraction is very important in hyperspectral image analysis. The accurate identification of endmembers enables target detection and classification and efficient spectral unmixing. Although a number of endmember extraction algorithms have been proposed, such as two state-of-the-art algorithms-vertex component analysis (VCA) and simplex growing algorithm (SGA)-it is still a rather challenging task. In this paper, a new maximum simplex volume method based on Householder transformation (HT), referred to as maximum volume by HT (MVHT), is presented for endmember extraction. The proposed algorithm provides consistent results with low computational complexity, which overcomes the disadvantage of the inconsistent result of VCA and the shortcoming of the high computational cost of SGA resulted from calculating the simplex volume. A comparative study and analysis are conducted among the three endmember extraction algorithms, VCA, SGA, and MVHT, on both simulated and real hyperspectral data. The obtained experimental results demonstrate that the proposed MVHT algorithm generally provides a competitive or even better performance over VCA and SGA.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 1 )