By Topic

Axial Ratio Enhancement for Circularly-Polarized Millimeter-Wave Phased-Arrays Using a Sequential Rotation Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Smolders, A.B. ; Eindhoven Univ. of Technol., Eindhoven, Netherlands ; Johannsen, U.

Circular polarization is indispensable for robust wireless communication between mobile devices that operate at mm-wave frequencies. Additionally, phased-array solutions are required to cope with the associated free space path loss. In view of the size constraints for antennas integrated on (Bi)CMOS chips, an array of linearly polarized dipoles using a sequential rotation scheme is an attractive approach to comply with all mentioned requirements. When steering such an array off broadside, however, the axial ratio will severely degrade. It is the purpose of this communication to demonstrate how the axial ratio can be retained by compensating the amplitudes and phases of the individual antenna elements. Measured results on a 6 GHz test-bed show that the axial ratio with the proposed calibration scheme remains below 3 dB within the 3 dB beamwidth of the scanned beam. Results from a 60 GHz test-bed confirm the effectiveness of the method.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:59 ,  Issue: 9 )