By Topic

A Lyapunov function based current controller to control active and reactive power flow in a three phase grid connected PV inverter under generalized grid voltage conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dasgupta, S. ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore ; Mohan, S.N. ; Sahoo, S.K. ; Panda, S.K.

In this paper, a novel control system is proposed to control the active and reactive grid power flow in a three phase grid connected PV inverter. The control system not only controls the grid power but also reduces the grid current THD in the presence of typical non-linear loads in parallel with grid at the point of common coupling (PCC). The proposed control system also takes care of not only the grid voltage unbalance but also the unbalance in the connecting line side inductors. The stability of the proposed control system is ensured by the direct method of Lyapunov. The proposed control system is not only simple to implement in the digital form but also provides superior performance over the conventional multiple PI or resonant control methods. A new grid connected inverter modeling technique is also proposed to take care of unbalances in the inverter system. Experimental results are provided to show the efficacy of the proposed control system.

Published in:

Power Electronics and ECCE Asia (ICPE & ECCE), 2011 IEEE 8th International Conference on

Date of Conference:

May 30 2011-June 3 2011