By Topic

Design aspects of a medium-voltage direct current (MVDC) grid for a university campus

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mura, F. ; E.ON Energy Res. Center, RWTH Aachen Univ., Aachen, Germany ; De Doncker, R.W.

Today's power systems use alternating current (ac) for transmission and distribution of electrical energy, although the first grids were based on direct current (dc). Due to the absence of appropriate equipment to change voltage levels dc technology did not become widely accepted and was finally ruled out by the more efficient ac infrastructure. However, as a result of considerable technical progress, high-voltage direct current (HVDC) transmission has found its way back into power systems. At lower voltage and power levels medium-voltage dc (MVDC) distribution has been proposed for offshore wind farms and industrial applications. This paper describes the design of an MVDC grid for the interconnection of high-power test benches at a university campus. Voltage control within the dc grid as well as the behavior in different fault scenarios is analyzed using numerical simulations. To assess the environmental impact of the grid the magnetic flux density emitted by the dc cable lines is calculated.

Published in:

Power Electronics and ECCE Asia (ICPE & ECCE), 2011 IEEE 8th International Conference on

Date of Conference:

May 30 2011-June 3 2011