By Topic

An Unenumerative DNA Computing Model for Vertex Coloring Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Jin Xu ; Key laboratory of High Confidence Software Technologies of Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing, China ; Xiaoli Qiang ; Yan Yang ; Baoju Wang
more authors

The solution space exponential explosion caused by the enumeration of the candidate solutions maybe is the biggest obstacle in DNA computing. In the paper, a new unenumerative DNA computing model for graph vertex coloring problem is presented based on two techniques: 1) ordering the vertex sequence for a given graph in such a way that any two consecutive labeled vertices i and i+1 should be adjacent in the graph as much as possible; 2) reducing the number of encodings representing colors according to the construture of the given graph. A graph with 12 vertices without triangles is solved and its initial solution space includes only 283 DNA strands, which is 0.0532 of 312 (the worst complexity).

Published in:

IEEE Transactions on NanoBioscience  (Volume:10 ,  Issue: 2 )