Cart (Loading....) | Create Account
Close category search window
 

Obstacle Avoidance Policies for Cluster Space Control of Nonholonomic Multirobot Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mas, I. ; Robotic Syst. Lab., Santa Clara Univ., Santa Clara, CA, USA ; Kitts, C.

The cluster space control technique promotes simplified specification and monitoring of the motion of mobile multirobot systems of limited size. In this publication, we summarize the definition of the cluster space framework and introduce a multirobot cluster space controller specific for unicycle-like nonholonomic mobile robots. The controller produces cluster commands that translate into valid robot-level motions. We then study the closed-loop system stability in the Lyapunov sense. Two different obstacle avoidance algorithms are proposed and the stability of the resulting systems is also addressed. Experimental tests with a three-robot system and simulation results with a ten-robot system verify the functionality of the proposed approaches.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:17 ,  Issue: 6 )

Date of Publication:

Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.