Cart (Loading....) | Create Account
Close category search window
 

State Estimation and Branch Current Learning Using Independent Local Kalman Filter With Virtual Disturbance Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Junqi Liu ; Inst. for Autom. of Complex Power Syst., RWTH Aachen Univ., Aachen, Germany ; Benigni, A. ; Obradovic, D. ; Hirche, S.
more authors

This paper presents a generalized approach to the design of independent local Kalman filters (KFs) without communication to be used for state estimation in distributed generation-based power systems. The design procedure is based on an improved model of the virtual disturbance concept proposed in a previous work. The local KFs are then synthesized based only on local models of the power network and on the characteristics of the associated virtual disturbance. The proposed solution is applied to an interconnected power network. By choosing appropriate models for the virtual disturbance, the local KFs can be suited for both dc and ac distribution systems. It is shown for both cases that the local KF can infer the local states of the network, including the aggregated branch currents coming from the other buses. Simulation results show improved results with respect to the previous proposed modeling approach even when the subsystems present widely different dynamics. The herein presented approach is well suited for the agent-based decentralized control of microgrids.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:60 ,  Issue: 9 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.