Cart (Loading....) | Create Account
Close category search window
 

Robust neural logic block (NLB) based on memristor crossbar array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Neural networks are considered as promising candidates for implementing functions in memristor crossbar array with high tolerance to device defects and variations. Based on such arrays, Neural Logic Blocks (NLB) with learning capability can be built to replace Configurable Logic Block (CLB) in programmable logic circuits. In this article, we describe a neural learning method to implement Boolean functions in memristor NLB. By using Monte-Carlo simulation, we demonstrate its high robustness against most important device defects and variations, like static defects and memristor voltage threshold variability.

Published in:

Nanoscale Architectures (NANOARCH), 2011 IEEE/ACM International Symposium on

Date of Conference:

8-9 June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.