By Topic

Ultra-fine grain FPGAs: A granularity study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pierre-Emmanuel Gaillardon ; CEA, LETI, MINATEC Campus, Grenoble, France ; M. Haykel Ben-Jamaa ; Fabien Clermidy ; Ian O'Connor

In this paper, we investigate the opportunity to use ultra-fine grain logic cells to design reconfigurable circuits. We use ultra-fine grain computation cells, built with only 7 Double-Gate Carbon Nanotubes FETs, and we arrange them into regular matrices with a fixed and incomplete interconnection pattern, in order to minimize the reconfigurable interconnection overhead. We subsequently organize them into Field-Programmable Gate Arrays (FPGAs) suited to ultra-fine grain reconfigurability. To assess this architectural scheme in an efficient and objective manner, we propose a complete benchmarking tool flow, which enables the optimization of the specific interconnection topologies. We finally perform the evaluation with widely used circuit benchmarks, and we show that the matrices have an optimal size of 3 by 3, while the ultra-fine grain FPGA demonstrated an area saving of up to 62% with respect to the CMOS LUT FPGA counterpart.

Published in:

2011 IEEE/ACM International Symposium on Nanoscale Architectures

Date of Conference:

8-9 June 2011