By Topic

Automatic segmentation and classification of pipeline images using mathematic morphology and fuzzy k-means algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Ziashahabi ; Department of Engineering, Shahed University, Tehran, Iran ; H. Sadjedi ; H. Khezripour

Defects on the Pipeline surface such as cracks cause main problems for governments, specifically when the pipeline is covered under the ground. Manual examination for surface defects in the pipeline has several disadvantages, including varying standards, and high cost. In this paper, a combination of two algorithms based on mathematical morphology and curvature evaluation for segmentation of defects is proposed. Then, we use fuzzy k-means clustering to classify pipe defects. The proposed method can be completely automated and has been tested on more than 250 scanned images of petroleum pipelines of Iran.

Published in:

2010 6th Iranian Conference on Machine Vision and Image Processing

Date of Conference:

27-28 Oct. 2010