By Topic

An incremental evolutionary method for optimizing dynamic image retrieval systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nikzad, M. ; Sci. & Res. Branch, Islamic Azad Univ., Tehran, Iran ; Moghaddam, H.A.

This paper introduces a new incremental evolutionary optimization method based on evolutionary group algorithm (EGA). The EGA was presented as an approach to overcome time-consuming drawbacks related to general evolutionary algorithms in large scale content-based image indexing retrieval (CBIR) optimization tasks. Here, we consider another challengeable limitation of usual evolutionary learning and optimization systems: learning in the scale-varying and dynamic environments. Hence, we present a new strategy based on EGA that is enhanced with the ability of incremental learning. Evaluation results on scale-varying and simulated dynamic CBIR systems show that the proposed method can continuously obtain good performance in the presence of environmental or scale changes.

Published in:

Machine Vision and Image Processing (MVIP), 2010 6th Iranian

Date of Conference:

27-28 Oct. 2010