By Topic

System integration of Elliptic Curve Cryptography on an OMAP platform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sergey Morozov ; ECE Department, Virginia Tech, Blacksburg, 24061, USA ; Christian Tergino ; Patrick Schaumont

Elliptic Curve Cryptography (ECC) is popular for digital signatures and other public-key crypto-applications in embedded contexts. However, ECC is computationally intensive, and in particular the performance of the underlying modular arithmetic remains a concern. We investigate the design space of ECC on TI's OMAP 3530 platform, with a focus on using OMAP's DSP core to accelerate ECC computations for the ARM Cortex A8 core. We examine the opportunities of the heterogeneous platform for efficient ECC, including the efficient implementation of the underlying field multiplication on the DSP, and the design partitioning to minimize the communications overhead between ARM and DSP. By migrating the computations to the DSP, we demonstrate a significant speedup for the underlying modular arithmetic with up to 9.24x reduction in execution time, compared to the implementation executing on the ARM Cortex processor. Prototype measurements show an energy reduction of up to 5.3 times. We conclude that a heterogeneous platform offers substantial improvements in performance and energy, but we also point out that the cost of inter-processor communication cannot be ignored.

Published in:

Application Specific Processors (SASP), 2011 IEEE 9th Symposium on

Date of Conference:

5-6 June 2011