By Topic

Protrusions of Super Grains Formed by Ultrashort Xe Flash-Lamp Annealing of Amorphous Silicon and Its Effect on the Performances of Thin-Film Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saurabh Saxena ; Advanced Display Research Center, Kyung Hee University, Seoul, Korea ; Jin Jang

We studied the formation of super grains and protrusions at the grain boundaries by the ultrashort Xe flash-lamp annealing of amorphous silicon. Huge protrusions at the grain boundary originate from the collision of nearby super grains with an average grain diameter of 40 μm , and small protrusions at the grain boundary are also observed. The crystallization starts from the seeds located at the center of the grains by releasing heat toward the surrounding Si. The formation of grain boundaries is related to lateral grain growth and pushing liquid silicon toward the direction of grain growth and the collisions between them. Thin-film transistors (TFTs) with various grain boundaries in the channel were investigated, and the p-channel poly-Si TFTs with two and four grain boundaries exhibited the maximum field-effect mobility of 112 and 75 cm2/V·s, respectively.

Published in:

IEEE Transactions on Electron Devices  (Volume:58 ,  Issue: 8 )