Cart (Loading....) | Create Account
Close category search window

Domain Structure in CoFeB Thin Films With Perpendicular Magnetic Anisotropy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yamanouchi, M. ; Center for Spintronics Integrated Syst., Tohoku Univ., Sendai, Japan ; Jander, A. ; Dhagat, P. ; Ikeda, S.
more authors

Domain structures in CoFeB-MgO thin films with a perpendicular easy magnetization axis were observed by magneto-optic Kerr-effect microscopy at various temperatures. The domain-wall surface energy was obtained by analyzing the spatial period of the stripe domains and fitting established domain models to the period. In combination with superconducting quantum interference device measurements of magnetization and anisotropy energy, this leads to an estimate of the exchange stiffness and domain-wall width in these films. These parameters are essential for determining whether domain walls will form in patterned structures and devices made of such materials.

Published in:

Magnetics Letters, IEEE  (Volume:2 )

Date of Publication:

Dec. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.