By Topic

Word error rate improvement and complexity reduction in Automatic Speech Recognition by analyzing acoustic model uncertainty and confusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Buzo, A. ; Fac. ETTI, Univ. Politeh. of Bucharest, Bucharest, Romania ; Cucu, H. ; Burileanu, C. ; Pasca, M.
more authors

In this paper, a study about the uncertainty of the trained acoustic models and the confusion among these models is made in the context of speech recognition. The purpose is to find the most relevant voice features, hence the analysis is made on a per-feature basis. Model uncertainty is defined as a measure of feature distribution overlapping. A model is compared only to the models it is more similar to. Hence, confusion matrices are built from both feature distributions and recognition results. Next, the voice features are weighted according to their relevance in order to increase the discrimination among models, while relevance itself is deduced from the values of model uncertainty. Experimental results show that, by appropriate weighting, the recognition accuracy, in terms of Word Error Rate (WER), improves. Moreover, by removing the features with lower weights, the recognition accuracy is maintained, but the number of calculations is significantly reduced.

Published in:

Speech Technology and Human-Computer Dialogue (SpeD), 2011 6th Conference on

Date of Conference:

18-21 May 2011