By Topic

Distant speech recognition for home automation: Preliminary experimental results in a smart home

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Benjamin Lecouteux ; Laboratoire d'Informatique de Grenoble, GETALP Team, UMR CNRS/UJF/G-INP 5217, France ; Michel Vacher ; Fran├žois Portet

This paper presents a study that is part of the Sweet-Home project which aims at developing a new home automation system based on voice command. The study focused on two tasks: distant speech recognition and sentence spotting (e.g., recognition of domotic orders). Regarding the first task, different combinations of ASR systems, language and acoustic models were tested. Fusion of ASR outputs by consensus and with a triggered language model (using a priori knowledge) were investigated. For the sentence spotting task, an algorithm based on distance evaluation between the current ASR hypotheses and the predefine set of keyword patterns was introduced in order to retrieve the correct sentences in spite of the ASR errors. The techniques were assessed on real daily living data collected in a 4-room smart home that was fully equipped with standard tactile commands and with 7 wireless microphones set in the ceiling. Thanks to Driven Decoding Algorithm techniques, a classical ASR system reached 7.9% WER against 35% WER in standard configuration and 15% with MLLR adaptation only. The best keyword pattern classification result obtained in distant speech conditions was 7.5% CER.

Published in:

Speech Technology and Human-Computer Dialogue (SpeD), 2011 6th Conference on

Date of Conference:

18-21 May 2011