Cart (Loading....) | Create Account
Close category search window
 

Doubly Robust Smoothing of Dynamical Processes via Outlier Sparsity Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Farahmand, S. ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Giannakis, G.B. ; Angelosante, D.

Coping with outliers contaminating dynamical processes is of major importance in various applications because mismatches from nominal models are not uncommon in practice. In this context, the present paper develops novel fixed-lag and fixed-interval smoothing algorithms that are robust to outliers simultaneously present in the measurements and in the state dynamics. Outliers are handled through auxiliary unknown variables that are jointly estimated along with the state based on the least-squares criterion that is regularized with the l1-norm of the outliers in order to effect sparsity control. The resultant iterative estimators rely on coordinate descent and the alternating direction method of multipliers, are expressed in closed form per iteration, and are provably convergent. Additional attractive features of the novel doubly robust smoother include: i) ability to handle both types of outliers; ii) universality to unknown nominal noise and outlier distributions; iii) flexibility to encompass maximum a posteriori optimal estimators with reliable performance under nominal conditions; and iv) improved pCoping with outliers contaminating dynamical processes is of major importance in various applications because mismatches from nominal models are not uncommon in practice. In this context, the present paper develops novel fixed-lag and fixed-interval smoothing algorithms that are robust to outliers simultaneously present in the measurements and in the state dynamics. Outliers are handled through auxiliary unknown variables that are jointly estimated along with the state based on the least-squares criterion that is regularized with the l1-norm of the outliers in order to effect sparsity control. The resultant iterative estimators rely on coordinate descent and the alternating direction method of multipliers, are expressed in closed form per iteration, and are provably convergent. Additional attractive features of the novel doubly robust smoother - - include: i) ability to handle both types of outliers; ii) universality to unknown nominal noise and outlier distributions; iii) flexibility to encompass maximum a posteriori optimal estimators with reliable performance under nominal conditions; and iv) improved performance relative to competing alternatives at comparable complexity, as corroborated via simulated tests.erformance relative to competing alternatives at comparable complexity, as corroborated via simulated tests.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.