By Topic

Bilateral control for remote controlled robotic forceps system with time varying delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ishii, C. ; Hosei Univ., Tokyo, Japan ; Mikami, H. ; Nakakuki, T. ; Hashimoto, H.

Recently, development of the surgical support devices with the application of robot technology is in demand. We have developed a multi-DOF robotic forceps manipulator using a novel omnidirectional bending mechanism, and for the developed robotic forceps manipulator, we proposed a passivity based bilateral control that enables motion scaling in both position tracking and force tracking, and guarantees the stability of the teleoperation system in the presence of constant time delay, so far. In this paper, the passivity based bilateral control is extended so as to guarantee the stability of the teleoperation system not only in the presence of the constant time delay but also in the presence of the time varying delay. In order to verify the effectiveness of the proposed control law, experimental works were carried out for the developed robotic forceps teleoperation system.

Published in:

Human System Interactions (HSI), 2011 4th International Conference on

Date of Conference:

19-21 May 2011