By Topic

Regenerative Phase Shift and Its Effect on Coherent Laser Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Corcoran, C.J. ; Corcoran Eng. Inc., Waltham, MA, USA ; Durville, F. ; Ray, W.

A coherent array of regenerative amplifiers in an external cavity with a rank 1 scattering matrix is described and analyzed. Using a resonant cavity analysis, it is shown how the addition of regenerative feedback to each element in the array creates a phase shift relative to the well-known “cold-cavity phase shift”. This phase shift is quantified and found to significantly affect the phasing properties of coherent arrays, even in the absence of the nonlinear Kerr effect and the gain-dependent phase shift. In particular, this regenerative phase shift is shown to concentrate the distribution of phases at the output of the laser array into a narrower phase range compared to the random distribution expected using a nonregenerative amplifier in the presence of effectively random cold-cavity phase shifts.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:47 ,  Issue: 7 )