Scheduled Maintenance on April 29th, 2016:
IEEE Xplore will be unavailable for approximately 1 hour starting at 11:30 AM EDT. We apologize for the inconvenience.
By Topic

Track-Before-Detect Algorithms for Targets with Kinematic Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. Orlando ; University of Salento ; G. Ricci ; Y. Bar-Shalom

We propose and assess new algorithms for adaptive detection and tracking based on space-time data. At design stage we take into account possible spillover of target energy to adjacent range cells and assume a target kinematic model. Then, resorting to the generalized likelihood ratio test (GLRT) we derive track-before-detect (TBD) algorithms that can operate in scan-to-scan varying scenarios and, more important, that ensure the constant false track acceptance rate (CFTAR) property with respect to the covariance matrix of the disturbance. Moreover, we also propose CFTAR versions of the maximum likelihood-probabilistic data association (ML-PDA) algorithm capable of working with data from an array of sensors. The preliminary performance assessment, conducted resorting to Monte Carlo simulation, shows that the proposed TBD structures outperform the ML-PDA implementations especially in terms of probability of track detection (and for low signal-to-noise ratio (SNR) values).

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:47 ,  Issue: 3 )