Cart (Loading....) | Create Account
Close category search window

Spatial Compressive Sensing for Direction-of-Arrival Estimation of Multiple Sources using Dynamic Sensor Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bilik, I. ; Dept. of Electr. Comput. Eng., Univ. of Massachusetts, Dartmouth, MA, USA

This work addresses the problem of direction-of-arrival (DOA) estimation of multiple sources using short and dynamic sensor arrays. We propose to utilize compressive sensing (CS) theory to reconstruct the high-resolution spatial spectrum from a small number of spatial measurements. Motivated by the physical structure of the spatial spectrum, we model it as a sparse signal in the wavenumber-frequency domain, where the array manifold is proposed to serve as a deterministic sensing matrix. The proposed spatial CS (SCS) approach allows exploitation of the array orientation diversity (achievable via array dynamics) in the CS framework to address challenging array signal processing problems such as left-right ambiguity and poor estimation performance at endfire. The SCS is conceptually different from well-known classical and subspace-based methods because it provides high azimuth resolution using a short dynamic linear array without restricting requirements on the spatial and temporal stationarity and correlation properties of the sources and the noise. The SCS approach was shown to outperform current superresolution and orientation diversity based methods in single-snapshot simulations with multiple sources.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:47 ,  Issue: 3 )

Date of Publication:

July 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.