Cart (Loading....) | Create Account
Close category search window
 

Further results on the capacity of free-space optical channels in turbulent atmosphere

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gappmair, W. ; Inst. of Commun. Networks & Satellite Commun., Graz Univ. of Technol., Graz, Austria

In recent studies, the average capacity for optimal rate adaptation (ORA) of free-space optical channels in turbulent atmosphere has been derived in closed form, mainly based on the application of Meijer's G-function. To this end, the channel was assumed to be memoryless, stationary and ergodic, with independent and identically distributed fading statistics. It was also assumed that scintillations follow a gamma'gamma distribution so as to appropriately describe moderate-to-strong turbulence conditions. In the current contribution, the author will extend this work in two aspects: (i) using the properties of Meijer's G-function, it is shown that the average capacity provides also a closed-form solution for adaptation policies other than ORA, namely optimal power and rate adaptation, channel inversion with fixed rate and truncated channel inversion with fixed rate; (ii) if the additional loss caused by a misalignment between transmitter and receiver (pointing error) is taken into account, it is demonstrated that the developed analytical framework applies straightforwardly.

Published in:

Communications, IET  (Volume:5 ,  Issue: 9 )

Date of Publication:

June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.