By Topic

Anti-uniform huffman codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Mohajer ; School of Computer and Communication Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne 1015, Switzerland ; A. Kakhbod

In this study, the authors consider the class of anti-uniform Huffman (AUH) codes. The authors derived tight lower and upper bounds on the average codeword length, entropy and redundancy of finite and infinite AUH codes in terms of the alphabet size of the source. These bounds are tighter than similar bounds. Also a tight upper bound on the entropy of AUH codes is presented in terms of the average cost of the code. The Fibonacci distribution is introduced, which plays a fundamental role in AUH codes. It is shown that such distributions maximise the average length and the entropy of the code for a given alphabet size. The authors also show that the minimum average cost of a code is achieved by an AUH codes in a highly unbalanced cost regime.

Published in:

IET Communications  (Volume:5 ,  Issue: 9 )