Cart (Loading....) | Create Account
Close category search window
 

Optimal Allocation of Redundancy Between Packet-Level Erasure Coding and Physical-Layer Channel Coding in Fading Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Courtade, T.A. ; Dept. of Electr. Eng., Univ. of California, Los Angeles, CA, USA ; Wesel, R.D.

For a block-fading channel, this paper optimizes the allocation of redundancy between packet-level erasure coding (which provides additional packets to compensate for packet loss) and physical layer channel coding (which lowers the probability of packet loss). After some manipulation, standard optimization techniques determine the trade-off between the amount of packet-level erasure coding and physical-layer channel coding that minimizes the transmit power required to provide reliable communication. Our results indicate that the optimal combination of packet-level erasure coding and physical-layer coding provides a significant benefit over pure physical-layer coding when no form of channel diversity is present within a packet transmission. However, the benefit of including packet-level erasure coding diminishes as more diversity becomes available within a packet transmission. Even with no diversity within a packet transmission, this paper shows that as the total redundancy becomes large the optimal redundancy for packet-level erasure coding reaches a limit while the optimal redundancy for physical-layer coding continues to increase. Hence providing limitless redundancy at the packet-level with rateless codes such as fountain codes is not the best use of limitless redundancy for block-fading channels.

Published in:

Communications, IEEE Transactions on  (Volume:59 ,  Issue: 8 )

Date of Publication:

August 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.