Cart (Loading....) | Create Account
Close category search window
 

A Psychovisual Quality Metric in Free-Energy Principle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Guangtao Zhai ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, ON, Canada ; Xiaolin Wu ; Xiaokang Yang ; Weisi Lin
more authors

In this paper, we propose a new psychovisual quality metric of images based on recent developments in brain theory and neuroscience, particularly the free-energy principle. The perception and understanding of an image is modeled as an active inference process, in which the brain tries to explain the scene using an internal generative model. The psychovisual quality is thus closely related to how accurately visual sensory data can be explained by the generative model, and the upper bound of the discrepancy between the image signal and its best internal description is given by the free energy of the cognition process. Therefore, the perceptual quality of an image can be quantified using the free energy. Constructively, we develop a reduced-reference free-energy-based distortion metric (FEDM) and a no-reference free-energy-based quality metric (NFEQM). The FEDM and the NFEQM are nearly invariant to many global systematic deviations in geometry and illumination that hardly affect visual quality, for which existing image quality metrics wrongly predict severe quality degradation. Although with very limited or even without information on the reference image, the FEDM and the NFEQM are highly competitive compared with the full-reference SSIM image quality metric on images in the popular LIVE database. Moreover, FEDM and NFEQM can measure correctly the visual quality of some model-based image processing algorithms, for which the competing metrics often contradict with viewers' opinions.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.