By Topic

Fourier Series Approximation for Max Operation in Non-Gaussian and Quadratic Statistical Static Timing Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lerong Cheng ; SanDisk Corp., Milpitas, CA, USA ; Fang Gong ; Wenyao Xu ; Jinjun Xiong
more authors

The most challenging problem in the current block-based statistical static timing analysis (SSTA) is how to handle the max operation efficiently and accurately. Existing SSTA techniques suffer from limited modeling capability by using a linear delay model with Gaussian distribution, or have scalability problems due to expensive operations involved to handle non-Gaussian variation sources or nonlinear delays. To overcome these limitations, we propose efficient algorithms to handle the max operation in SSTA with both quadratic delay dependency and non-Gaussian variation sources simultaneously. Based on such algorithms, we develop an SSTA flow with quadratic delay model and non-Gaussian variation sources. All the atomic operations, max and add, are calculated efficiently via either closed-form formulas or low dimension (at most 2-D) lookup tables. We prove that the complexity of our algorithm is linear in both variation sources and circuit sizes, hence our algorithm scales well for large designs. Compared to Monte Carlo simulation for non-Gaussian variation sources and nonlinear delay models, our approach predicts the mean, standard deviation and 95% percentile point with less than 2% error, and the skewness with less than 10% error.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 8 )