By Topic

A Trajectory Generation Algorithm for Optimal Consumption in Electromagnetic Actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Antonio Fabbrini ; Department of Information Engineering, University of Siena, Siena, Italy ; Andrea Garulli ; Paolo Mercorelli

Camless internal combustion engines offer improvements over traditional engines in terms of torque performance, reduction of emissions, reduction of pumping losses and fuel economy. Theoretically, electromagnetic valve actuators offer the highest potentials for improving efficiency due to their control flexibility. For real applications, however, the valve actuators developed so far suffer from high power consumption and other control problems. One key point is the design of the reference trajectory to be tracked by the closed loop controller. In this brief, a design technique aimed at minimizing power consumption is proposed. A constrained optimization problem is formulated and its solution is approximated by exploiting local flatness and physical properties of the system. The performance of the designed trajectory is validated via an industrial simulator of the valve actuator.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:20 ,  Issue: 4 )