By Topic

Reinforcement learning based distributed multiagent sensing policy for cognitive radio networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jarmo Lundén ; Aalto University, SMARAD CoE, Department of Signal Processing and Acoustics, Finland ; Visa Koivunen ; Sanjeev R. Kulkarni ; H. Vincent Poor

In this paper a distributed multiagent, multiband reinforcement learning based sensing policy for cognitive radio ad hoc networks is proposed. The proposed sensing policy employs secondary user (SU) collaboration through local interactions. The goal is to maximize the amount of available spectrum found for secondary use given a desired diversity order, i.e. a desired number of SUs sensing simultaneously each frequency band. The SUs in the cognitive radio network make local decisions based on their own and their neighbors' local test statistics or decisions to identify unused spectrum locally. Thus, the network builds a locally available map of spectrum occupancy of its geographical area. Simulation results show that the proposed sensing policy provides a significant increase in the amount of available spectrum found for secondary use compared to a random sensing policy.

Published in:

New Frontiers in Dynamic Spectrum Access Networks (DySPAN), 2011 IEEE Symposium on

Date of Conference:

3-6 May 2011