By Topic

Thermodynamic Atmospheric Profiling During the 2010 Winter Olympics Using Ground-Based Microwave Radiometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)

Ground-based microwave radiometer profilers in the 20-60-GHz range operate continuously at numerous sites in different climate regions. Recent work suggests that a 1-D variational (1-DVAR) technique, coupling radiometric observations with outputs from a numerical weather prediction model, may outperform traditional retrieval methods for temperature and humidity profiling. The 1-DVAR technique is applied here to observations from a commercially available microwave radiometer deployed at Whistler, British Columbia, which was operated by Environment Canada to support nowcasting and short-term weather forecasting during the Vancouver 2010 Winter Olympic and Paralympic Winter Games. The analysis period included rain, sleet, and snow events (~235-mm total accumulation and rates up to 18 mm/h). The 1-DVAR method is applied “quasi-operationally,” i.e., as it could have been applied in real time, as no data were culled. The 1-DVAR-achieved accuracy has been evaluated by using simultaneous radiosonde and ceilometer observations as reference. For atmospheric profiling from the surface to 10 km, we obtain retrieval errors within 1.5 K for temperature and 0.5 g/m3 for water vapor density. The retrieval accuracy for column-integrated water vapor is 0.8 kgm2, with small bias (-0.1 kgm2) and excellent correlation (0.96). The retrieval of cloud properties shows a high probability of detection of cloud/no cloud (0.8/0.9, respectively), low false-alarm ratio (0.1), and cloud-base height estimate error within ~0.60 km.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 12 )