By Topic

A Robust Learning Approach to Repeated Auctions With Monitoring and Entry Fees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Danak, A. ; Electr. & Comput. Eng. Dept., McGill Univ., Montreal, QC, Canada ; Mannor, S.

In this paper, we present a strategic bidding framework for repeated auctions with monitoring and entry fees. We motivate and formally define the desired properties of our framework and present a recursive bidding algorithm, according to which buyers learn to avoid submitting bids in stages where they have a relatively low chance of winning the auctioned item. The proposed bidding strategies are computationally simple as players do not need to recompute the sequential strategies from the data collected to date. Pursuing the proposed efficient bidding (EB) algorithm, players monitor their relative performance in the course of the game and submit their bids based on their current estimate of the market condition. We prove the stability and robustness of the proposed strategies and show that they dominate myopic and random bidding strategies using an experiment in search engine marketing.

Published in:

Computational Intelligence and AI in Games, IEEE Transactions on  (Volume:3 ,  Issue: 4 )