By Topic

Measurement of Lung Hyperelastic Properties Using Inverse Finite Element Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Naini, A.S. ; Dept. of Electr. & Comput. Eng., Univ. of Western Ontario, London, ON, Canada ; Patel, R.V. ; Samani, A.

Hyperelastic properties of deflated lung tissue have been characterized via an inverse finite element approach. Such properties are useful in many medical diagnosis and treatment applications where tissue deformation can be modeled to account for during the procedure. Several indentation experiments were conducted on various porcine lungs' tissue specimens resected immediately from different regions and lobes after the animals were sacrificed. Three different strain energy models, namely Ogden, Yeoh, and Polynomial, were used and respective hyperelastic parameters were obtained. The parameters for each model were estimated through an optimization process where the experimental force-displacement profiles of indentation were fitted to those obtained from finite element simulations performed specifically for the samples' geometries. Results obtained in this investigation for all the three models indicate convergence with reasonably low average fitting errors ranging from 2.3% to 6.2%. Independent tests were also performed to assess the effects of samples' heterogeneities on the obtained parameters. The outcome of these tests was encouraging and confirmed small impact of tissue inhomogeneities on the estimated parameters. The reported hyperelastic properties can, accordingly, pave the way for more accurate biomechanical modeling of the lung's soft tissue in the emerging applications of minimally invasive medical intervention for lung cancer diagnosis and treatment.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 10 )