Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

A Lightweight Algorithm for Message Type Extraction in System Application Logs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Makanju, A. ; Fac. of Comput. Sci., Dalhousie Univ., Halifax, NS, Canada ; Zincir-Heywood, A.N. ; Milios, E.E.

Message type or message cluster extraction is an important task in the analysis of system logs in computer networks. Defining these message types automatically facilitates the automatic analysis of system logs. When the message types that exist in a log file are represented explicitly, they can form the basis for carrying out other automatic application log analysis tasks. In this paper, we introduce a novel algorithm for carrying out message type extraction from event log files. IPLoM, which stands for Iterative Partitioning Log Mining, works through a 4-step process. The first three steps hierarchically partition the event log into groups of event log messages or event clusters. In its fourth and final stage, IPLoM produces a message type description or line format for each of the message clusters. IPLoM is able to find clusters in data irrespective of the frequency of its instances in the data, it scales gracefully in the case of long message type patterns and produces message type descriptions at a level of abstraction, which is preferred by a human observer. Evaluations show that IPLoM outperforms similar algorithms statistically significantly.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 11 )