Cart (Loading....) | Create Account
Close category search window

Compact and high-quality gamma-ray source applied to 10 μm-range resolution radiography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ben-Ismail, A. ; Laboratoire d’Optique Appliquée, ENSTA, CNRS, Ecole Polytechnique, 91761 Palaiseau, France ; Lundh, O. ; Rechatin, C. ; Lim, J.K.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Gamma-ray beams with optimal and tuneable size, temperature, and dose are of great interest for a large variety of applications. These photons can be produced by the conversion of energetic electrons through the bremsstrahlung process in a dense material. This work presents the experimental demonstration of 30 μm resolution radiography of dense objects using an optimized gamma-ray source, produced with a high-quality electron beam delivered by a compact laser-plasma accelerator.

Published in:

Applied Physics Letters  (Volume:98 ,  Issue: 26 )

Date of Publication:

Jun 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.