By Topic

Spherical representation and polyhedron routing for load balancing in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xiaokang Yu ; Dept. of Comput. Sci., Shandong Univ., Jinan, China ; Xiaomeng Ban ; Wei Zeng ; Sarkar, R.
more authors

In this paper we address the problem of scalable and load balanced routing for wireless sensor networks. Motivated by the analog of the continuous setting that geodesic routing on a sphere gives perfect load balancing, we embed sensor nodes on a convex polyhedron in 3D and use greedy routing to deliver messages between any pair of nodes with guaranteed success. This embedding is known to exist by the Koebe-Andreev-Thurston Theorem for any 3-connected planar graphs. In our paper we use discrete Ricci flow to develop a distributed algorithm to compute this embedding. Further, such an embedding is not unique and differs from one another by a Möbius transformation. We employ an optimization routine to look for the Möbius transformation such that the nodes are spread on the polyhedron as uniformly as possible. We evaluated the load balancing property of this greedy routing scheme and showed favorable comparison with previous schemes.

Published in:

INFOCOM, 2011 Proceedings IEEE

Date of Conference:

10-15 April 2011