By Topic

A distributed and privacy preserving algorithm for identifying information hubs in social networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ilyas, M.U. ; Dept. of ECE, Michigan State Univ., East Lansing, MI, USA ; Shafiq, M.Z. ; Liu, A.X. ; Radha, H.

This paper addresses the problem of identifying the top-k information hubs in a social network. Identifying top-k information hubs is crucial for many applications such as advertising in social networks where advertisers are interested in identifying hubs to whom free samples can be given. Existing solutions are centralized and require time stamped information about pair-wise user interactions and can only be used by social network owners as only they have access to such data. Existing distributed and privacy preserving algorithms suffer from poor accuracy. In this paper, we propose a new algorithm to identify information hubs that preserves user privacy. The intuition is that highly connected users tend to have more interactions with their neighbors than less connected users. Our method can identify hubs without requiring a central entity to access the complete friendship graph. We achieve this by fully distributing the computation using the Kempe-McSherry algorithm to address user privacy concerns. To the best of our knowledge, the proposed algorithm represents an arguably first attempt that (1) uses friendship graphs (instead of interaction graphs), (2) employs a truly distributed method over friendship graphs, and (3) maintains user privacy by not requiring them to disclose their friend associations and interactions, for identifying information hubs in social networks. We evaluate the effectiveness of our proposed technique using a real-world Facebook data set containing about 3.1 million users and more than 23 million friendship links. The results of our experiments show that our algorithm is 50% more accurate than existing distributed algorithms. Results also show that the proposed algorithm can estimate the rank of the top-k information hubs users more accurately than existing approaches.

Published in:

INFOCOM, 2011 Proceedings IEEE

Date of Conference:

10-15 April 2011