By Topic

A low-complexity congestion control and scheduling algorithm for multihop wireless networks with order-optimal per-flow delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Po-Kai Huang ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Xiaojun Lin ; Chih-Chun Wang

We consider the problem of designing a joint congestion control and scheduling algorithm for multihop wireless networks. The goal is to maximize the total utility and achieve low end-to-end delay simultaneously. Assume that there are M flows inside the network, and each flow m has a fixed route with Hm hops. Further, the network operates under the one-hop interference constraint. We develop a new congestion control and scheduling algorithm that combines a window-based flow control algorithm and a new distributed rate-based scheduling algorithm. For any ϵ, ϵm ∈ (0, 1), by appropriately choosing the number of backoff mini-slots for the scheduling algorithm and the window-size of flow m, our proposed algorithm can guarantee that each flow m achieves throughput no smaller than rm(1 - ϵ)(1 - ϵm), where the total utility of the rate allocation vector r⃗ = [rm] is no smaller than the total utility of any rate vector within half of the capacity region. Furthermore, the end-to-end delay of flow m can be upper bounded by Hm/(rm(1 - ϵ)ϵm). Since a flow-m packet requires at least Hm time slots to reach the destination, the order of the per-flow delay upper bound is optimal with respect to the number of hops. To the best of our knowledge, this is the first fully-distributed joint congestion-control and scheduling algorithm that can guarantee order-optimal per-flow end-to-end delay and utilize close-to-half of the system capacity under the one-hop interference constraint. The throughput and delay bounds are proved by a novel stochastic dominance approach, which could be of independent value and be extended to general interference constraints. Our algorithm can be easily implemented in practice with a low per-node complexity that does not increase with the network size.

Published in:

INFOCOM, 2011 Proceedings IEEE

Date of Conference:

10-15 April 2011