By Topic

VIRO: A scalable, robust and namespace independent virtual Id routing for future networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jain, S. ; Univ. of Minnesota-Twin Cities, Minneapolis, MN, USA ; Yingying Chen ; Zhi-Li Zhang

In this paper we propose VIRO - a novel, virtual identifier (Id) routing paradigm for future networks. The objective is three-fold. First, VIRO directly addresses the challenges faced by the traditional layer-2 technologies such as Ethernet, while retaining its simplicity feature. Second, it provides a uniform convergence layer that integrates and unifies routing and forwarding performed by the traditional layer-2 and layer-3, as prescribed by the traditional local-area/wide-area network dichotomy. Third and perhaps more importantly, VIRO decouples routing from addressing, and thus is namespace-independent. The key idea in our design is to introduce a topology-aware, structured virtual id (vid) space onto which both physical identifiers as well as higher layer addresses/names are mapped. VIRO completely eliminates network-wide flooding in both the data and control planes, and thus is highly scalable and robust. Furthermore, VIRO effectively localizes failures, and possesses built-in mechanisms for fast rerouting and load-balancing.

Published in:

INFOCOM, 2011 Proceedings IEEE

Date of Conference:

10-15 April 2011