By Topic

Adaptive algorithms for detecting community structure in dynamic social networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nam P. Nguyen ; Department of Computer and Information Science and Engineering, University of Florida, USA ; Thang N. Dinh ; Ying Xuan ; My T. Thai

Social networks exhibit a very special property: community structure. Understanding the network community structure is of great advantages. It not only provides helpful information in developing more social-aware strategies for social network problems but also promises a wide range of applications enabled by mobile networking, such as routings in Mobile Ad Hoc Networks (MANETs) and worm containments in cellular networks. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social activities and interactions are evolving rapidly. Can we quickly and efficiently identify the network community structure? Can we adaptively update the network structure based on previously known information instead of recomputing from scratch? In this paper, we present Quick Community Adaptation (QCA), an adaptive modularity-based method for identifying and tracing community structure of dynamic online social networks. Our approach has not only the power of quickly and efficiently updating network communities, through a series of changes, by only using the structures identified from previous network snapshots, but also the ability of tracing the evolution of community structure over time. To illustrate the effectiveness of our algorithm, we extensively test QCA on real-world dynamic social networks including ENRON email network, arXiv e-print citation network and Facebook network. Finally, we demonstrate the bright applicability of our algorithm via a realistic application on routing strategies in MANETs. The comparative results reveal that social-aware routing strategies employing QCA as a community detection core outperform current available methods.

Published in:

INFOCOM, 2011 Proceedings IEEE

Date of Conference:

10-15 April 2011