By Topic

KIPDA: k-indistinguishable privacy-preserving data aggregation in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Groat, M.M. ; Dept. of Comput. Sci., Univ. of New Mexico, Albuquerque, NM, USA ; Wenbo He ; Forrest, S.

When wireless sensor networks accumulate sensitive or confidential data, privacy becomes an important concern. Sensors are often resource-limited and power-constrained, and data aggregation is commonly used to address these issues. However, providing privacy without disrupting in-network data aggregation is challenging. Although privacy-preserving data aggregation for additive and multiplicative aggregation functions has been studied, nonlinear aggregation functions such as maximum and minimum have not been well addressed. We present KIPDA, a privacy-preserving aggregation method, which we specialize for maximum and minimum aggregation functions. KIPDA obfuscates sensitive measurements by hiding them among a set of camouflage values, enabling k-indistinguishability for data aggregation. In principle, KIPDA can be used to hide a wide range of aggregation functions, although this paper considers only maximum and minimum. Because the sensitive data are not encrypted, it is easily and efficiently aggregated with minimal in-network processing delay. We quantify the efficiency of KIPDA in terms of power consumption and time delay, studying tradeoffs between the protocol's effectiveness and its resilience against collusion.

Published in:

INFOCOM, 2011 Proceedings IEEE

Date of Conference:

10-15 April 2011