By Topic

Keep your friends close: Incorporating trust into social network-based Sybil defenses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abedelaziz Mohaisen ; University of Minnesota, Minneapolis, 55455, USA ; Nicholas Hopper ; Yongdae Kim

Social network-based Sybil defenses exploit the algorithmic properties of social graphs to infer the extent to which an arbitrary node in such a graph should be trusted. However, these systems do not consider the different amounts of trust represented by different graphs, and different levels of trust between nodes, though trust is being a crucial requirement in these systems. For instance, co-authors in an academic collaboration graph are trusted in a different manner than social friends. Furthermore, some social friends are more trusted than others. However, previous designs for social network-based Sybil defenses have not considered the inherent trust properties of the graphs they use. In this paper we introduce several designs to tune the performance of Sybil defenses by accounting for differential trust in social graphs and modeling these trust values by biasing random walks performed on these graphs. Surprisingly, we find that the cost function, the required length of random walks to accept all honest nodes with overwhelming probability, is much greater in graphs with high trust values, such as co-author graphs, than in graphs with low trust values such as online social networks. We show that this behavior is due to the community structure in high-trust graphs, requiring longer walk to traverse multiple communities. Furthermore, we show that our proposed designs to account for trust, while increase the cost function of graphs with low trust value, decrease the advantage of attacker.

Published in:

INFOCOM, 2011 Proceedings IEEE

Date of Conference:

10-15 April 2011